THE COORDINATION CHEMISTRY OF THE ACTINIDE HALIDES

K. W. BAGNALL

Atomic Energy Research Establishment, Harwell, Didcot, Berkshire (Great Britain)

(Received March 28th, 1967)

CONTENTS

- A. Introduction
- B. General survey
- C. The tervalent actinides
 - (i) Trihalides
 - (ii) Oxyhalides
 - (iii) Complexes
- D. The tetravalent actinides
 - (i) Tetrahalides
 - (ii) Oxyhalides
 - (iii) Halocomplexes
 - (iv) Oxygen donor complexes
 - (v) Nitrogen donor complexes
 - (vi) Sulphur donor complexes
 - (vii) Cyclopentadienylhalides
- E. The pentavalent actinides
 - (i) Pentahalides
 - (ii) Oxyhalides
 - (iii) Halocomplexes
 - (iv) Oxygen donor complexes
 - (v) Nitrogen donor complexes
- F. The hexavalent actinides
 - (i) Hexahalides
 - (ii) Halocomplexes
 - (iii) Oxyhalides
 - (iv) Oxyhalocomplexes
 - (v) Complexes of the oxyhalides with oxygen donors
 - (vi) Complexes of the oxyhalides with nitrogen donors

A. INTRODUCTION

Although comprehensive reviews of the chemistry of the actinide halides are available^{1,2} and much detailed information about the halides has been given by Katz and Seaborg³, there has been only one review dealing specifically with the coordination chemistry of the actinides as a group⁴. The preser review includes the stereochemistry of the halides themselves but, as will be seen, structural data are lacking for almost every donor complex recorded here.

B. GENERAL SURVEY

The earlier members of the actinide group, up to americium, exhibit a greater variety of valence states (Table 1) than the higher actinides, which appear to be predominantly lanthanide in character, but very little is known about the complexing properties of any of the tervalent actinides.

TABLE 1

OXIDATION STATES OF ELEMENTS 89-95

Element Atomic No.	Ac 89	Th 90	Pa 91	U 92	Np 93	Pu 94	Am 95	Cationic species in aqueous solution
	3			3	3		3	M³ ⁺
		4	4	4	4	4	4	M ⁴⁺
			5	5	5	5	5	MO, + (exceptPa)
				6	6	6	6	MO _s ⁺⁺

a The most stable oxidation state in aqueous solution is italicised.

Unlike the lanthanides, in which the 4f electrons are not accessible for bonding, the 5f orbitals of the actinides extend spatially into the outer, valence regions of the atom; they are less effectively shielded by the outer electrons, and have relatively lower binding energies, than is the case with the 4f orbitals. Because of these factors, and in marked contrast to the lanthanides, the actinides form a wide variety of complex species in which hybridization must involve the normally unoccupied higher energy orbitals (6d, 7s, 7p) and this can be expected only with the more strongly coordinating ligands. Thus stable complexes, other than the hydrated cations in solution, are formed most commonly with ligands which contain highly electronegative donor atoms, such as oxygen. Although f orbitals are obviously not as important as d orbitals in bonding, the contribution of the former to bonding cannot be neglected. For example, the stability of the oxygenated ions MO_2^+ and MO_2^{++} is attributed to f orbital participation.

Although there is still some doubt about the electronic configuration of the lighter actinides, largely because the 6d and 5f electron-binding energies are very

similar even at uranium, magnetic studies of uranium trichloride in lanthanum chloride are consistent with a 5f³ configuration⁶ and similar studies of the higher activides accord with a 5fⁿ configuration⁷.

The actinide cations, whatever the oxidation state, are, like the lanthanide cations, large compared with d-transition element cations and are therefore appreciably more basic in character. Since the actinide cations decrease in size with increasing atomic number—the actinide contraction—the electrostatic attraction between actinide ions and ligands will increase in magnitude for a given oxidation state as the cation radius decreases, and for a given element as the cation charge increases. Thus in the tervalent state, halide complexing of the earlier members of the group in aqueous solution is relatively weak, although there is evidence for the chlorocomplex species MCl²⁺ and MCl₂^{+8.9}, and it is evident that halide ions will only displace the hydration water from actinide(III) ions in very concentrated halide solutions. Americium(III) forms anionic chlorocomplexes in aqueous solution⁹ and salts of these can be obtained with little difficulty at high chloride concentrations¹⁰. Bromide ion complexes the terpositive actinides more weakly than chloride ion, and the general complexing behaviour of the actinides in all valence states indicates that they are Chatt—Ahrland A-class elements.

The shapes of the f orbitals, unlike those of the s, p and d orbitals, are not commonly depicted in the standard textbooks, but they have been described in the literature^{11,12}; their transformation properties under the operations of the common symmetry groups have also been tahulated¹³.

All of the actinides are radioactive and are therefore extremely toxic; because of this, work with all of these elements, excepting natural thorium and uranium, must be carried out in glove-boxes and, since the quantities available of the transcurium elements are very small, work with them is restricted to microscale studies. The techniques used for such work have been described in the reviews of the chemistry of the actinides^{1,3}.

C. THE TERVALENT ACTINIDES

(i) Trihalides. The anhydrous trifluorides (Ac, U-Cm) have the hexagonal LaF₃ structure^{1.14} in which the metal ion lies on a two-fold axis and has 9 nearly equidistant neighbours¹⁵. The trichlorides (Ac, U-Cm, Cf) are also of hexagonal symmetry^{1.14.16}, but in this UCi₃ structure type 9 coordination is achieved in the form of a trigonal prism with three chlorine atoms situated above the centres of the three tetragonal faces¹⁷. AcBr₃, UBr₃ and α -NpBr₃ also have this structure¹, but β -NpBr₃, PuBr₃, AmBr₃, and CmBr₃ have the orthorhombic PuBr₃ structure in which the metal ion is 8-coordinate, the coordination arrangement being the same as in the UCl₃ structure but with only two of the bromine atoms situated above tetragonal faces of the prism¹⁷. The change in structure is due to

the decrease in radius of the M^{3+} ions with increasing atomic number and a similar structure change occurs with the triiodides. UI₃, NpI₃ and PuI₃^{1,18} have the orthorhombic PuBr₃ structure, whereas AmI₃ and CmI₃ are of hexagonal symmetry¹⁴ and the coordination arrangement is uncertain. Thorium triiodide is not isomorphous with UI₃ and is probably more correctly formulated as $Th^{4+}(e^-)$ (I⁻)₃; both forms of thorium diiodide may also be of this type¹⁹.

- (ii) Oxyhalides. Apart from AcOF, which appears to have the 8-coordinate cubic fluorite structure²⁰, all other known oxyhalides have the tetragonal PbFCl structure²⁰⁻²⁴, a layer structure in which the metal is also 8-coordinate. The only known imidochloride, U(NH)Cl, also possesses this structure²⁵.
- (iii) Complexes. Fluorocomplexes of the type NaMF₄ (M = Pu, Am) have been made by solid state reactions; they are 26 of hexagonal symmetry but although they are said to have the β_2 -Na₂ThF₆ structure, the NaNdF₄ structure seems more likely²⁷; in both structures the environment of the 9-coordinate metal ion^{17,27} is similar to that of the metal ion in the UCl3 structure type. Studies of fused salt systems have produced evidence for species such as PuCl₅^{2-28,29}, PuCl₆⁶⁻³⁰, PuCl₆^{3-28,29} and Pu₂Cl₇⁻²⁹, but only the hexachlorocomplex, Cs₃PuCl₆·2H₂O, has been isolated from aqueous solution³¹; no structural data are available for any of these species. The AmCl₆³⁻ ion is known from spectral studies to be of octahedral symmetry32 and it is probable that the anion in Cs2NaAmCl6, obtained from aqueous solution, is also octahedral; the anion in CsAmCl₄ · 2 H₂O is probably not octahedral, the crystal apparently containing lattice water which is not coordinated to the metal in the anion. The Am-Cl stretching vibrations appear at 240 cm⁻¹ and 214 cm⁻¹ respectively in Cs₂NaAmCl₆ and Cs₃AmCl₆ ¹⁰, the latter isolated from ethanol solution. To date there is no evidence for the existence of any similar bromo- and iodo-complexes; the only other recorded complex is $UBr_3 \cdot 6 NH_3$, the structure of which is unknown³³.

D. THE TETRAVALENT ACTINIDES

(i) Tetrahalides. The tetrafluorides (Th-Cm) are all of monoclinic symmetry, the UF₄ structure consisting of 8 fluorine atoms arranged around the metal atom in a slightly distorted antiprism³⁴, whereas the tetrachlorides (Th-Np), in which the metal is still 8-coordinate, are of tetragonal symmetry with, in the case of uranium, each metal atom having the four nearest (2.41 Å) halogen atoms at the apices of an almost flat tetrahedron (or at the corners of a distorted square) and four more distant chlorine atoms at 3.09 Å³⁵. Thorium tetrabromide is dimorphic and the high temperature form, with which protactinium tetrabromide is isomorphous³⁶, may be isostructural with uranium tetrachloride³⁷. Thorium tetraiodide

is of monoclinic symmetry and has a layer structure in which the metal is surrounded by 8 iodine atoms in a deformed square antiprism³⁸. X-ray powder data are available for the other tetrabromides and tetraiodides, but their stereochemistry is unknown. Some infrared data are given in Table 2.

- (ii) Oxyhalides. The infrared spectra of all the known oxodihalides, MOX₂, indicate that they are oxygen bridged polymers²; one of them, ThOF₂, was thought to have the LaF₃ structure²³ but subsequent work indicates that the compound is a fluorite type mixed crystal containing randomly distributed oxygen and fluorine atoms³⁹.
- (iii) Halocomplexes. A wide variety of fluorocomplexes have been recorded; genuine compounds of the type LiMF₅ (M = Th-Cm) are of tetragonal symmetry but where the radius ratio A^+/M^{4+} lies between 0.99 and 1.59, compounds reported to be of this type but of rhombohedral symmetry actually have the composition $7 A^t F \cdot 6 MF_4$ (Th-Cm); however, where the radius ratio A^+/M^{4+} lies between 1.59 and 1.68, both types of compound can exist⁴⁰. The coordination polyhedron around the actinide ion in the 7:6 complexes will be as that in the zirconium compound, $Na_7Zr_6F_{3t}$, with which the actinide compounds are isostructural; this is an 8-coordinate array, six M^{4+} ions being arranged in a polyhedron which contains the "extra" fluorine atom⁴¹.

The U⁴⁺ ion in LiUF₅ has a 9-coordinate environment similar to that found for UCl₃⁴² and a similar 9-coordinate array has been reported for U₂F₉⁴³, for complexes of the type $\Lambda^{1}M_{2}F_{9}$ (Th, U-Pu^{17,44}) and for the hexafluorocomplexes of the β_{2} -Na₂ThF₆ and β_{1} -K₂UF₆ structure types¹⁷, whereas compounds such as BaMF₆ (Th, U) have a disordered LaF₃ structure²³. The U⁴⁺ ion in α -K₂UF₆ and γ -Na₂UF₆ is 8-coordinate, the former being a disordered²³ and the latter a slightly deformed¹⁷ fluorite structure. In both Na₃UF₇¹⁷ and K₃UF₇ (which is dimorphic⁴⁵) the metal is 7-coordinate, at the centre of a pentagonal bipyramid. Octafluorocomplexes, $\Lambda^{1}_{4}MF_{8}$ (Pa⁴⁶, U-Pu^{47,48}, Am⁴⁹) exist but the structure of the anion is not known.

Halogens of higher atomic number do not appear to give rise to such a variety of complexes as does fluorine, the common type being A¹₂MX₆ (Th-Pu,

TABLE 2 $_{
m METAL-HALOGEN}$ stretching frequencies in complexes of the type ${
m A}^{\rm I}_{
m s}{
m MX}_{
m a}$

	cm ⁻¹	Reference:		cm ⁻¹	References
Th-Cl	251-258	55	Th-Br	177-179	55
Pa-Cl	257-266	103	Pa-Br	180-182	103
U-Cl	253-259	55	U-Br	178-181	55
Np-CI	265-267	55, 56			

Coordin. Chem. Rev., 2 (1967) 145-162

X = Cl, Br; Th-U, X = I). X-ray crystallography has shown that the anion is of octahedral symmetry in the chlorocomplexes⁵⁰, a result confirmed by spectroscopic⁵¹ and magnetic susceptibility⁵² studies. Similar studies^{51,53,54} indicate that the anion retains this symmetry in the hexabromo- and hexaiodo-complexes. The mixed halocomplex ion, $UCl_4Br_2^{2-}$, has the *trans* octahedral configuration⁵⁴. Some infrared data are given in Table 2.

A number of other thorium chlorocomplexes have been reported, including hydrated and anhydrous A¹ThCl₃ ⁵⁷, hydrated KTh₂Cl₉ ⁵⁸ and anhydrous A¹₄ThCl₈ ⁵⁹. These systems have not been investigated since the compounds were first prepared and they are clearly worth further study.

(iv) Oxygen donor complexes. The only known adducts of the tetrafluorides are the hydrates, such as $MF_4 \cdot 2.5 H_2O$ ($Th^{60.61}$, U^{62} , Pu^{63}) and the hydrate systems of the other tetrabalides appear to be more complicated (e.g. $UCl_4 \cdot 4.5-9 H_2O^{64}$). 1:2 and 1:4 complexes of the actinide tetrahalides with monodentate ligands are quite common, but their stereochemistry, and the coordination number of the M^{4+} ion, as with the hydrates, are often unknown. Some infrared data are given in Table 3.

The 1:2 complexes ThCl₄ · 2 L (L = ethanol⁶⁵, acetaldehyde⁶⁶, cinnamal-dehyde⁶¹, UCl₄ · 2 L (L = tri-n-butylphosphate⁶⁸), ThBr₄ · 2 L (L = ethylace-

TABLE 3

METAL-HALOGEN STRETCHING FREQUENCIES AND LIGAND SHIFTS IN SOME COMPLEXES OF THE TETRA-HALDES

Compound	M-Cl (cm ⁻¹)	Ligand shift (cm ⁻¹)	References
ThCi,a	245		55
UCI,	254		55
ThCl. 4 DMA		Δν(C≔O) 44	75
2 UCl ₄ · 5 DMA	245, 259	$\Delta v(C=0)$ 29	80, 89
(UI ₂ Cl ₂ - 5 DMA) ₂	254	⊿ν(C≔O) 54	80
ThCl ₄ · 4 MeCN	25 6	$\Delta \nu (C=N) 24$	55, 79
PaCl ₄ · 4 MeCN		$\Delta v(C=N)$ 26	36
UCI4 - 4 McCN	262	$\Delta v(C=N)$ 29	55, 79
UCl ₄ · 2 Ph ₃ PO	267	Δν(P=O) —	54
Compound	M-Br (cm ⁻¹)	Ligand shift (cm ⁻¹)	References
ThBr. · 4 DMA	176	Δν(C=O) 34	79
UBr _s · 4 DMA	180	$\Delta v(C=0)$ 34	79
ThBr4 · 4 MeCN	188	$\Delta v(C=N)$ 24	55, 79
PaBr 4 MeCN		$\Delta \nu (C=N) 25$	36
UBr. · 4 MeCN	193	Δν(C≔N) 27	55, 79

⁶ The M-F stretching frequency appears at 520 cm⁻¹ in the case of gaseous ThF₄¹¹⁶ and at 400 cm⁻¹ in the case of solid PaF₄¹¹¹. DMA = N_1N_2 -dimethylacetamide.

tate⁶⁹), and $MX_4 \cdot 2L$ (M = Th, U^{70} , Pa^{36} ; X = Cl, Br; L = hexamethylphosphoramide) may be *trans*-octahedral like the phosphine oxide complexes, $UX_4 \cdot 2R_3PO$ ($X = Cl^{54,72}$, Br^{54}).

Thorium tetrachloride forms 1:4 complexes with cinnamaldehyde⁷³, aceto-phenone, benzophenone⁷⁴, N,N-dimethylacetamide (DMA)⁷⁵, N,N-dimethylformamide (DMF)⁷⁶ and aliphatic alcohols⁶⁵. Uranium tetrachloride also forms 1:4 complexes with alcohols⁷⁷, N-methylacetamide⁷⁵ and with phosphorus oxytrichloride⁷⁸. Both thorium tetrabromide and uranium tetrabromide form 1:4 complexes with DMA⁷⁹, as does uranium tetraiodide⁸⁰, which also forms a similar complex with DMF⁸¹, and thorium tetrabromide forms 1:4 complexes with ethanol and with benzaldehyde⁶⁹.

A number of 1:3 complexes of the tetrahalides have been recorded and in all cases the coordination number of the metal atom is uncertain. Thorium and uranium tetrachlorides form such complexes with tetrahydrofuran 2 and dioxan 3,84, whilst uranium tetrachloride also forms 1:3 complexes with tri-n-butyl-phosphate 5, trimethyl phosphine oxide 6, acetone 4, diphenylsulphoxide 7 and dimethylsulphoxide 70,224. Although the last is monomeric in methyl cyanide, it is possible that the uranium atom is 8-coordinate in a chlorine bridged dimeric structure in the solid state; similarly, $ThCl_4 \cdot 5$ DMSO may involve 10-coordinate thorium 70. The S=0 shifts in the infrared spectra of the DMSO complexes are between 102 and 112 cm⁻¹ 70. A plutonium tetrachloride complex with DMSO, $PuCl_4 \cdot 3$ DMSO, has also been reported 224. Thorium tetrabromide forms 1:3 complexes with ethyl benzoate 69 and with hexamethylphosphoramide, the latter being monomeric in benzene but a 1:1 electrolyte in nitromethane 70. The P=O shift in the infrared spectrum of $ThBr_4 \cdot 3$ HMPA is only 130 cm⁻¹, as compared with shifts of 159-174 cm⁻¹ in the 1:2 complexes 70.

Uranium tetrachloride has been reported to form the complex UCl₄·3 DMF⁸¹ but other work⁸⁸ indicates that the complex has the stoicheiometry 2 UCl₄·5 DMF, the same as that found⁸⁹ for the DMA complexes, 2 MCl₄·5 DMA (U, Np. Pu); the structure probably involves the 8-coordinate metal atom with one ligand and two chlorine bridges⁸⁰.

Thorium tetrabromide forms a complex of unusual stoicheiometry with acetophenone⁶⁹, 2 ThBr₄ · 7 L, and 1:6 complexes of the tetrahalides with acetamide⁸⁹, MCl₄ · 6 L (U, Np, Pu), dimethylsulphoxide⁷⁰, MBr₄ · 6 L (Th, U) and N,N-dimethylacetamide⁸⁰, ThI₄ · 6 DMA, are also known.

Complexes with bidentate oxygen donors include the apparently simple 1:1 complexes of uranium tetrachloride with methylene and ethylene bis-(diphenylphosphine) oxides 86 and N,N,N',N'-tetramethyl- α,α -dimethylmalonamide (HM-MA) 90 , the 2:3 complexes of thorium and uranium tetrachloride with the corresponding glutaramides, thorium tetrachloride with HMMA and uranium tetrachloride with N,N,N',N'-tetramethylmalonamide, which forms a 1:2 complex with thorium tetrachloride. Most of these complexes are probably ligand bridged poly-

mers⁹⁰. A 1:2 complex of uranium tetrachloride with 1,2 dimethoxyethane is also known⁹¹.

(v) Nitrogen donor complexes. 1:4 primary amine complexes of thorium tetrachloride⁹², thorium tetrabromide^{69,93} and uranium tetrachloride⁹⁴, and 1:4 complexes of uranium tetrachloride with ammonia^{87,95}, piperidine⁸⁷ and, somewhat surprisingly, with ethylenediamine⁸⁷ are also known; the structure of the ethylenediamine complex is well worth investigation. Uranium tetrachloride forms a 1:6 adduct with hydrazine⁹⁴ and thorium tetrachloride is said to form a hexammine⁹², but the thorium tetrabromide–ammonia system is less well defined, ammines in the composition range ThBr₄ · 8-20 NH₃ being reported. Uranium tetrachloride is also reported to form 1:2 complexes with ammonia and primary amines⁹⁴ and a 1:2 o-phenanthroline complex with thorium tetrachloride is known⁸⁸.

Pyridine forms the complexes $ThBr_4 \cdot 3 py^{69}$ and $UCl_4 \cdot 2 py^{87}$, and 1:3 stoicheiometry had been reported for the thorium tetrachloride-toluidine complex⁹². 1:1 complexes of thorium tetrachloride with α -picoline⁹⁷ and of uranium tetrachloride with primary amines⁹⁴ are also known.

Methyl cyanide complexes of the tetrahalides are nearly all of 1:4 stoicheiometry (ThCl₄^{79,83}; PaCl₄⁷¹; UCl₄⁷⁹; ThBr₄^{69,79}; PaBr₄⁷¹; UBr₄⁷⁹; Thl₄⁵³), as is the benzyl cyanide complex, ThCl₄·4 PhCN⁸³, although the 1:2 complexes ThCl₄·2 PhCN⁹⁸ and UCl₄·2 MeCN⁸⁴ have also been recorded. The metal ions are presumably 8-coordinate in the complexes of 1:4 stoicheiometry, but molecular weight and conductivity data are not available, in many cases because the compounds are not appreciably soluble in any suitable solvent.

No complexes of the actinide tetrahalides with monodentate phosphines are known, the complexes supposed to be of this type being phosphine oxide adducts⁹⁹, but a 1:1 adduct of uranium tetrachloride with tetra-P-methylenediphosphine⁹¹ is probably a genuine complex.

- (vi) Sulphur donor complexes. There is little evidence for the existence of complexes with monodentate sulphur donors, thioacetamide⁸⁹ and phosphine sulphides⁸⁶ failing to form complexes with uranium tetrachloride. The only known complex seems to be that with 1,2 dimethylthioethane, $UCl_4 \cdot 2L$, in which the uranium is thought to be 8-coordinate⁹¹.
- (vii) Cyclopentadienylhalides. Tris(cyclopentadienyl)chlorides of thorium and uranium are known^{100,101}, the structure of the uranium compound being an approximately tetrahedral arrangement of the three cyclopentadiene rings and the chlorine atom about the central uranium atom¹⁰².

E. THE PENTAVALENT ACTINIDES

- (i) Pentahalides. Simple compounds are known only for protactinium and uranium; protactinium pentafluoride¹⁰⁴ is isostructural with the low temperature (β) form of uranium pentafluoride, in which the uranium atom is thought to be 7-coordinate in a pentagonal bipyramidal arrangement in which vertices are shared at four positions in the pentagon¹⁰⁵; a somewhat similar 7-coordinate arrangement has been established for protactinium pentachloride¹⁰⁶. The structure of α -UF₅, the high temperature form, consists of an infinite chain of octahedra linked by opposite corners¹⁰⁵, whereas in UCI₅ edges of the octahedron are shared to form a dimeric unit¹⁰⁷. No structural data are available for PaBr₅⁷¹, PaI₅¹⁰⁸ or UBr₅^{109,110}, the only other known actinide pentahalides; intermediate fluorides of the type U₂F₉ and U₄F₁₇ have distorted UF₄ structures and uranium in the former is 9-coordinate⁴³.
- (ii) Oxyhalides. Compounds of the type M₂OX₈ (M, X: Pa, F¹¹¹; U, F¹¹²; Pa, Cl), are dimorphic¹¹³ and well established, and although there is some evidence for the existence of UOF₃¹¹⁴ and PaOCl₃¹¹³, the only compounds of the type MOX₃ which are known with any certainty are UOCl₃^{115,116}, which also forms a 1:1 adduct with ethanol¹¹⁷, PaOBr₃⁷¹, UOBr₃^{110,118,119}, PaOI₃¹⁰⁸ and NpOF₃·x H₂O¹²⁰. Structural data are available only for PaOBr₃, in which protactinium is 7-coordinate in a pentagonal bipyramidal arrangement¹²¹.

A few dioxohalides are also known; NpO₂F¹²⁰, PaO₂Cl¹¹³, PaO₂Br⁷¹, UO₂Br¹²² and PaO₂l¹⁰⁸ have been reported, but the infrared spectrum of UO₂Br differs most markedly from those recorded for other actinide oxohalides (Table 4) and further work on this compound is desirable. The compound Pa₂O₃Cl₄¹¹³, like all the other oxohalides, is probably an oxygen bridged polymer.

Oxohalocomplex salts of the types A¹₂MOCl₅(U¹¹⁷, Np⁵⁶), A¹MO₂F₂ (Np, Pu, Am^{123,124}) and A¹₃MO₂Cl₄ (Np⁵⁶, Am¹²⁵) have been prepared and infrared data for some of these, and other actinide(V) halide species, are given in Table 4.

TABLE 4
INFRARED SPECTRA OF THE PENTAHALIDES, OXYHALIDES AND SOME OXYHALOCOMPLEXES

Compound	M-X (cm ^{-t})	M-0 (cm ⁻¹)	Rejetences	Compound	M-X (cm ⁻¹)	M-O (cni ⁻¹)	References
Pa ₂ OF ₄	450	790, 740, 690	III	Cs ₂ NpO ₂ CI ₄	264	810, 794	56
NpO ₄ F	476, 385, 277	800	120	Cs2AmO2CI		800	125
PaCl,	323, 362		113	PaOBr,	_	513, 364, 298(?)	71
αPa ₂ OCl _a	326, 370	460, 500	113	PaO ₃ Br		642, 576, 376	71
βPa ₂ OCl ₂	324, 370	458, 506	113	UO ₂ Br	_	940, 890, 850	122
Pa ₂ O ₂ Cl ₂	342, 378	426, 540	113	PaOis		480, 339, 276	108
PaO ₄ Cl	396	520, 624	113	PaO _a I		555, 469, 386, 281	108
(Ph ₄ As) ₂ NpOCl ₂	271	907	56				
Cs _z NpOCI _s	275	921	56				

(iii) Halocomplexes. Fluorocomplexes of the types A^tMF_6 ($Pa^{127-131}$; $U^{132-140}$; Np^{141} ; Pu^{142}), $A^t_2MF_7$ ($Pa^{130.143,144}$; U^{145} ; Np^{141} ; Pu^{142}) and $A^t_3MF_6$ ($Pa^{130.146,147}$; $U^{145,148,149}$; Np^{120}) are now known; some infrared data are given in Table 5.

TABLE 5

METAL-HALOGEN STRETCHING FREQUENCIES IN ACTINIDE(V) HALOCOMPLEXES

Compound	$M-X$, (cm^{-1})	References	Compound	M-X, (cm-1)	Rescrences
KPaF.	523, 454	130	A ¹ ,PaF,	430-438, 356-357	130
CsUF.	503	150	A ¹ aPaF	395-404 ^b	130
NOUF.	550, 509°	135	A ^I NpF	_	120
A ^t PaCla	305-310	151	(NMe _e) _a PaCi _e	290	151
AIUCI.	305-310	152			
A ¹ PaBra	215-216	153			

^{*} NOUF₁; \$50, 509 cm⁻¹, but the intensities of the two bands are interchanged as compared with NOUF₄¹²⁸, ¹⁵ Na₃PaF₄; 468, 422 cm⁻¹ 120.

Lithium and sodium hexafluorouranates(V) are known to have the LiSbF₆ structure, and a second form of the sodium salt has the NaTaF₆ structure; CsMF₆ (U, Np, Pu) have the KOsF₆ structure, and in all these compounds the metal atom is in octahedral coordination. The protactinium atom in K_2 PaF₇ is 9-coordinate, the coordination polyhedron being close to a trigonal prism with three additional fluorine atoms in the equatorial plane¹⁵⁴. The rubidium heptafluorocomplex salts, Rb₂MF₇ (U, Np, Pu) are isostructural with K_2 NbF₇ in which the metal ion is 7-coordinate in the c:ystal, six fluorines being at the apices of a trigonal prism and the seventh above the centre of one of the tetragonal faces. The structures of the other fluoro complexes are not yet known.

Hexachlorometallates(V), A^tMCl₆ (Pa¹⁵¹; U¹⁵²) and the analogous protactinium bromides¹⁵³ and iodides¹⁵⁶ have been prepared, but stable octachlorocomplex salts are formed only with the tetramethylammonium ion (Pa¹⁵¹; U¹⁵²); no structural data are available for these compounds.

(iv) Oxygen donor complexes. The nature of hydrated protactinium pentafluoride, $PaF_3 \cdot 2 H_2O^{1.04}$, is uncertain and no definite hydrates of the other pentahalides have been recorded. Phosphine oxides form 1:1 complexes, $MCI_5 \cdot R_3PO(Pa^{1.57}; U^{1.58})$ which are remarkable for the large P=O shift (over 200 cm⁻¹) observed in their infrared spectra. They do not react with an excess of the ligand, to form oxychloride complexes, unlike their niobium and tantalum analogues, which exhibit an equally large P=O shift and which form complexes of the type $MOCI_3 \cdot 2 R_3PO^{1.57}$. A peculiar complex of uranium pentachloride with trichloroacryloyl chloride (TAC), 5 $UCI_5 \cdot TAC$, has been recorded 1.59.

(v) Nitrogen donor complexes. The only nitrogen donor complex known is PaBr₅ · 3 CH₃CN⁷¹, the Pa-Br stretching frequency appearing¹⁵³ at 216 cm⁻¹, and there is no record of any complex with a sulphur donor ligand.

F. THE HEXAVALENT ACTINIDES

- (i) Hexahalides. Uranium¹⁶⁰⁻¹⁶³, neptunium^{164, 165} and plutonium^{164, 165} hexafluorides are all of regular octahedral symmetry and uranium hexachloride is of near octahedral symmetry¹⁶⁶.
- (ii) Halocomplexes. Heptafluoro- and octafluorouranates(VI), $A^{I}UF_{7}^{136,167-171}$ and $A^{I}_{2}UF_{8}^{171-173}$ are well established, but the enneafluorocomplexes, $A^{I}_{3}UF_{9}$, although reported on many occasions (e.g. 174-176), seem to be rather doubtful. The uranium atom in $Na_{2}UF_{8}$ is 8-coordinate¹⁷¹ and it is possible that the UF_{7}^{-1} ion has a pentagonal bipyramidal structure. A complex of composition 2 $NaF_{1}^{-1}UF_{1}^{-1}UF_{1}^{-1}UF_{2}^{-1}UF_{3}^{-1}UF_{4}^{-1}UF_{3}^$
- (iii) Oxyhalides. Actinide (VI) oxyhalides of the type MO₂X₂ are quite well known; the fluorides (U, Np, Pu) are isostructural, and the recently prepared americium compound will probably conform to this structure. The uranyl compound has a linear O-U-O group and six fluorine atoms are bonded to the metal (2.50 Å), but the structure is not a hexagonal bipyramid, for the fluorine atoms are arranged around the uranium atom in much the same manner as the carbon atom in the chair form of cyclohexane¹⁸⁰. Only two chlorides (U, Pu) have been recorded, but their structures have not been determined, and the only actinide (VI) bromides and iodides known are the uranyl compounds, the former of which is not very stable at room temperature and the latter is so unstable that it has never been isolated other than in complexes. Some infrared data are given in Table 6.

TABLE 6
INFRARED SPECTRA OF THE ACTINIDE(VI) OXYHALIDES, MO₂X₂

Compound	$M=O$ (cm^{-1})	M-X (cm ⁻¹)	References
UO,F,	990	·	120, 181
NpO ₂ F ₄	980	446, 277, 255	120
PuO ₂ F ₂	975	_	182
UO,CI,	905, 948		183
UO,Br.	905, 930	_	183

^{*} ν₁, 852 cm⁻³.

Coordin. Chem. Rev., 2 (1967) 145-162

(iv) Oxyhalocomplexes. Fluorocomplexes of the types A¹MO₂F₃ (hydrated, U¹⁸⁴; Np¹²⁰; Pu¹⁸⁵), A¹₃(UO₂)₂F₇¹⁸⁴, A¹UO₃F^{186,187} and A¹₃UO₂F₅ are known, the stereochemistry of the anion in the last being a pentagonal bipyramid¹⁸⁸. A compound of composition UO₂Cl₂·HCl·2 H₂O¹⁸⁹ has been recorded and this may possibly be the hydrated acid HUO₂Cl₃, but no salts derived from such an acid are known and the halocomplexes formed with chlorine (and the other halogens) are nearly all of the type A¹₂MO₂Cl₄ (U¹⁸⁹, ^{190,191}; Np^{56,191}; Pu^{190,191}; Am¹²⁵), a type not formed with fluorine. It has been established that the UO₂Cl₄²⁷ ion is near octahedral in the caesium salt¹⁹², as it is in the corresponding bromocomplex¹⁹³, although it was observed in both cases that the linear O-U-O group did not appear to be quite normal to the equatorial plane. Similar uranyl bromocomplexes have been prepared¹⁹⁴⁻¹⁹⁶, but only one iodocomplex salt, (Ph₃-BuP)₂UO₂I₄, is known¹⁹⁶. Salts such as K₂UO₃Cl₂^{197,198}, K₂UO₃Br₂¹⁹⁸ and CsUO₃Cl are also known, the structure of the anion in the last being a distorted pentagonal bipyramid¹⁹⁹. Some infrared data are given in Table 7.

TABLE 7
INFRARED SPECTRA OF THE ACTINIDE(VI) OXYHALO COMPLEXES

Сотроила	M-O	M-X	References	
	(cm ⁻¹)	(cm ⁻¹)		
CsUO ₂ F ₃	935, 895		120	
CsNpO ₂ F ₃	935		120	
K ₃ UO ₂ F ₅	863, 789		225	
Cs ₃ NpO ₂ F ₆	870, 840	357, 294	120	
(Ph ₃ BuP) ₂ UO ₂ I ₄ Anion	925		196	
UO ₂ Cl ₄ 2-	904-930	270	196	
UO ₂ Cl ₂ Br ₂ ²⁻	912	260 (U-CI)	196	
NpO ₂ Cl ₄ 2-	919	271	56	
AmO ₂ Cl ₄ ²⁻	902		125	
UO ₂ Br ₄ 2-	921-934		196	

(v) Complexes of the oxyhalides with oxygen donors. The existence of complexes of the uranyl halides is well documented, but structural data are generally lacking, and no work seems to have been done on the analogous neptunyl, plutonyl and americal systems. The uranyl halides commonly form 1:2 complexes with oxygen donors; phosphine oxide adducts of the chloride⁸⁶, bromide^{84, 99, 196, 200} and iodide^{99, 196} have the trans-octahedral configuration¹⁹⁶. Some infrared data are given in Table 8.

Uranyl chloride also forms 1:2 complexes with N,N-dimethylacetamide⁷⁹, 1,3 dimethylurea and tetramethylurea²⁰¹, 1,5 diphenyl- and 1,5-bis(p-methoxyphenyl)-3-pentadienone, dibenzal- and dianisyl-acetone²⁰², 4-methoxy- and 4-nitro-pyridine-N-oxide²⁰³, ethanol²⁰⁴, diethylether²⁰⁸ and acetamide, but in this case monohydrated²⁰⁵. There is also spectroscopic evidence for the formation of

TABLE 8	
BEBIREN DITA TOR OVUCEN DONOR	COMPLETE OF THE HOANVE MATTREE

921 931	274	1070 (P=O)	22 124
021		toto(t=0)	99, 196
731	_	1060 (P=O)	99, 196
943	_	1060 (P=O)	99, 196
922	231	995 (S=O)	215
922		995 (S≃O)	215
924, 918		1613 (C=O)	79
922	_	1608 (C=O)	79
962	_	2280 (C≡N)	79
958			79
	943 922 922 924, 918 922 962	943 — 922 231 922 — 924, 918 — 922 — 962 —	943 — 1060 (P=O) 922 231 995 (S=O) 922 — 995 (S=O) 924, 918 — 1613 (C=O) 922 — 1608 (C=O) 962 — 2280 (C≡N)

a 1:2 complex with tri-n-butylphosphate (TBP) in ligand solutions of uranyl chloride²⁰⁶. A few uranyl bromide analogues have been recorded; 1:2 complexes are formed with N,N-dimethylacetamide⁷⁹, tri-n-butylphosphate²⁰⁶, acetic anhydride (described as a black solid²⁰⁷), diethylether²¹⁶, 1,5-bis(p-methoxyphenyl)-3-pentadienone, 2,6-dimethylpyran-4-one and acetophenone²⁰⁸. Apart from the phosphine oxide complexes mentioned earlier, uranyl iodide does not appear to from 1:2 complexes.

A number of 1:4 complexes have been recorded; uranyl chloride forms such complexes with 1,3-dimethylurea (which is also reported to form a 1:5 complex²⁰¹), 4-chloropyridine N-oxide²⁰³ and urea²⁰⁵; hydrated 1:2 and 1:3 complexes with urea have also been isolated²⁰⁹. Uranyl bromide forms 1:4 complexes with phenacetin and aminopyrine²¹⁰, presumably coordinated by way of the carbonyl oxygen in both cases, and uranyl iodide⁸¹ forms a 1:4 complex with N,N-dimethylformamide (DMF). Since the corresponding 1:3 complexes of uranyl chloride⁸¹ and uranyl bromide²¹¹ with DMF ionise as (UO₂X · 3 L)⁺X⁻²¹², as does the 1:3 uranyl chloride complex with dimethyl sulphoxide²¹³, it is probable that the uranyl iodide complex will be found to be a 2:1 electrolyte. Some infrared data²¹⁵ are given in Table 8.

Uranyl chloride also yields 1:3 complexes with ethylurea, 1,3 diethylurea²⁰¹, 4-methylpyridine N-oxide²⁰³ and there is spectroscopic evidence for the existence of $UO_2Cl_2 \cdot 3$ TBP in solution²¹⁴. Curiously, the uranyl bromide complex, $UO_2Br_2 \cdot 4.5$ DMSO, ionises as a 1:1 electrolyte²¹³ and is obviously worth further investigation.

A few 1:1 complexes of uranyl chloride are known; the benzophenone²⁰⁸ and acetyl chloride²¹⁷ complexes would be expected to be 1:2 compounds. Crystallographic data are also available for uranyl chloride monohydrate²¹⁸. Uranyl chloride complexes with N,N,N',N'-tetramethyldicarboxylic acid amides are of 2:3 or 1:1 stoicheiometry and are probably polymeric⁷⁹.

(vi) Complexes of the oxyhalides with nitrogen donors. Uranyl halide ammines of 1:2 (F²¹⁹; Cl^{220,221}; Br²¹⁹), 1:3 (F²¹⁹; Cl²²²; Br²¹⁹) and 1:4 (F, Br²¹⁹) stoicheiometry have been recorded. The 1:2 and 1:3 complexes with alkyl amines, and the 1:4 complex with hydrazine²²² are also known. 1:1 complexes of uranyl chloride with methyl cyanide⁷⁹, 2,2-dipyridyl (dihydrated²²³) and both 1:1 and 1:2 complexes with 1,10-phenanthroline²²³ have been reported. As usual, no structural data are available for any of them.

The so-called 1:2 triphenylphosphine complexes of uranyl chloride, bromide and iodide are now known to be the phosphine oxide adducts 99.196.

REFERENCES

- J. J. KATZ AND I. SHEFT, in H. J. EMELÉUS AND A. G. SHARPE (Eds.), Advances in Inorganic and Radiochemistry, Academic Press, New York, 2 (1960) 195.
- 2 K. W. BAGNALL, Intern. Rev. Halogen Chemistry, in press.
- 3 J. J. KATZ AND G. T. SEABORG, The Chemistry of the Actinide Elements, Methuen, London, 1957.
- 4 A. E. COMYNS, Chem. Rev., 60 (1960) 115.
- 5 R. E. CONNICK AND Z. Z. HUGUS, J. Am. Chem. Soc., 74 (1952) 6012.
- 6 P. HANDLER AND C. A. HUTCHISON, JR., J. Chem. Phys., 25 (1956) 1210.
- 7 J. K. DAWSON, C. J. MANDLEBERG AND D. DAVIES, J. Chem. Soc., (1951) 2047.
- 8 M. SHILOH AND Y. MARCUS, Israel A.E.C. Report IA-781 (1962).
- 9 M. SHILOH AND Y. MARCUS, Israel A.E.C. Report IA-924 (1964).
- 10 K. W. BAGNALL, J. B. LAIDLER AND M. A. A. STEWART, J. Chem. Soc. (A), in press.
- 11 H. G. Friedman, Jr., G. R. Choppin and D. G. Feuerbacher, J. Chem. Educ., 41 (1964) 354.
- 12 C. BECKER, J. Chem. Educ., 41 (1964) 358.
- 13 S. F. A. KETTLE AND A. J. SMITH, J. Chem. Soc. (A), (1967) 689.
- 14 L. B. ASPREY, T. K. KEENAN AND F. H. KRUSE, Inorg. Chem., 4 (1965) 985.
- 15 A. ZALKIN, D. H. TEMPLETON AND T. E. HOPKINS, Inorg. Chem., 5 (1966) 1466.
- 16 J. L. GREEN, U.S. Report UCRL-16516 (1965).
- 17 W. H. ZACHARIASEN, Acta Cryst., 1 (1948) 265.
- 18 L. B. ASPREY, T. K. KEENAN AND F. H. KRUSE, Inorg. Chem., 3 (1964) 1137.
- 19 D. E. SCAIFE AND A. W. WYLIE, J. Chem. Soc., (1964) 5450.
- 20 S. FRIED, F. HAGEMANN AND W. H. ZACHARIASEN, J. Am. Chem. Soc., 72 (1950) 771.
- 21 S. A. SHCHUKAREV AND A. I. EFIMOV, Zh. Neorg. Khim., 2 (1957) 2304.
- 22 D. H. TEMPLETON AND C. H. DAUBEN, J. Am. Chem. Soc., 75 (1953) 4560.
- 23 W. H. ZACHARIASEN, Acta Cryst., 2 (1949) 388.
- 24 W. H. ZACHARIASEN, Acta Cryst., 4 (1951) 231.
- 25 H. J. BERTHOLD, Z. Anorg. Chem., 348 (1966) 50.
- 26 C. KELLER AND H. SCHMUTZ, Z. Naturforsch., 19B (1964) 1080.
- 27 J. H. Burns, Inorg. Chem., 4 (1965) 881.
- 28' R. BENZ, M. KAHN AND J. A. LEARY, J. Phys. Chem., 63 (1959) 1983.
- 29 R. BENZ AND R. M. DOUGLASS, J. Phys. Chem., 65 (1961) 1461.
- 30 K. W. R. JOHNSON, M. KAHN AND J. A. LEARY, J. Phys. Chem., 65 (1961) 2226.
- 31 R. E. STEVENS, J. Inorg. Nuclear Chem., 27 (1965) 1873.
- 32 J. L. RYAN, personal communication.
- 33 E. D. EASTMAN AND B. J. FONTANA, U.S. Report TID-5290 (1958), book 1, p. 206.
- 34 A. C. LARSEN, R. B. ROOF, JR. AND D. T. CROMER, Acta Cryst., 17 (1964) 555.
- 35 R. C. L. MOONEY, Acta Cryst., 2 (1949) 189.
- 36 D. BROWN AND P. J. JONES, Chem. Commun., (1966) 280.
- 37 D. E. Scaife, Inorg. Chem., 5 (1965) 162.
- 38 A. ZALKIN, J. D. FORRESTER AND D. H. TEMPLETON, Inorg. Chem., 3 (1964) 639.
- 39 R. W. M. D'Eye, J. Chem. Soc., (1958) 196.

- 40 R. E. THOMA, Inorg. Chem., 1 (1962) 220.
- 41 J. H. BURNS, R. D. ELLISON AND H. A. LEVY, U.S. Report ORNL-3913 (1965) p. 17.
- 42 G. D. BRUNTON, Acta Cryst., 21 (1966) 814.
- 43 W. H. ZACHARIASEN, Acta Cryst., 2 (1949) 390.
- 44 W. H. ZACHARIASEN, J. Am. Chem. Soc., 70 (1948) 2147.
- 45 W. H. ZACHARIASEN, Acta Cryst., 7 (1954) 792.
- 46 L. B. Asprey and R. A. Penneman, Proc. Colloque Physicochim. Protactinium, Paris (1965) 109.
- 47 R. BENZ, R. M. DOUGLASS, F. H. KRUSE AND R. A. PENNEMAN, Inorg. Chem., 2 (1963) 799.
- 48 R. A. PENNEMAN, F. H. KRUSE, R. S. GEORGE AND J. S. COLEMAN, Inorg. Chem., 3 (1964) 309.
- 49 L. B. ASPREY AND R. A. PENNEMAN, Inorg. Chem., 1 (1962) 134.
- 50 W. H. ZACHARIASEN, Acta Cryst., 1 (1948) 268.
- 51 J. L. RYAN AND C. K. JØRGENSEN, Molec. Phys., 7 (1963) 17.
- 52 G. A. CANDELA, C. A. HUTCHISON, JR. AND W. B. LEWIS, J. Chem. Phys., 30 (1959) 246.
- 53 K. W. BAGNALL, D. BROWN, P. J. JONES AND J. G. H. DU PREEZ, J. Chem. Soc., (1965) 350.
- 54 J. P. DAY AND L. M. VENANZI, J. Chem. Soc. (A), (1966) 197.
- 55 D. Brown, J. Chem. Soc. (A), (1966) 766.
- 56 K. W. BAGNALL AND J. B. LAIDLER, J. Chem. Soc. (A), (1966) 516.
- 57 E. CHAUVENET, Compt. Rend., 148 (1909) 1519.
- 58 P.-T. CLÈVE, Bull. Soc. Chim. France, (2) 21 (1874) 115.
- 59 E. CHAUVENET, Ann. Chim. Phys., (8) 23 (1911) 425.
- 60 R. W. M. D'EYE AND G. W. BOOTH, J. Inorg. Nuclear Chem., 1 (1955) 326.
- 61 R. W. M. D'EYE AND G. W. BOOTH, J. Inorg. Nuclear Chem., 4 (1957) 13.
- 62 J. K. DAWSON, R. W. M. D'EYE AND A. E. TRUSWELL, J. Chem. Soc., (1954) 3922.
- 63 J. K. Dawson, R. M. Elliott, R. Hurst and A. E. Truswell, J. Chem. Soc., (1954) 558.
- 64 C. POMMIER, Rev. Chim. Minérale, 3 (1966) 447.
- 65 D. C. BRADLEY, M. A. SAAD AND W. J. WARDLAW, J. Chem. Soc., (1954) 2002.
- 66 A. ROSENHEIM, V. SAMTER AND J. DAVIDSOHN, Z. Anorg. Chem., 35 (1903) 424.
- 67 A. ROSENHEIM AND W. LEVY, Ber., 37 (1904) 3662.
- 68 V. P. SHEVCHENKO, V. S. SCHMIDT AND E. A. NENAROKOMOV, Radiokhimiya, 3 (1961) 129.
- 69 R. C. YOUNG, J. Am. Chem. Soc., 56 (1934) 29.
- 70 K. W. BAGNALL, D. BROWN, P. J. JONES AND J. G. H. DU PREEZ, J. Chem. Soc. (A), (1966) 737.
- 71 D. Brown and P. J. Jones, J. Chem. Soc. (A), (1966) 262.
- 72 P. GANS AND B. C. SMITH, Chem. and Ind., (1963) 911.
- 73 A. ROSENHEIM AND W. LEVY, Ber., 37 (1904) 3667.
- 74 G. JANTSCH AND W. URBACH, Helv. Chim. Acta, 2 (1919) 490.
- 75 K. W. BAGNALL, D. BROWN, P. J. JONES AND P. S. ROBINSON, J. Chem. Soc., (1964) 2531.
- 76 T. Moeller and D. S. Smith, U.S. Report AFOSR-TN-58-559 (1958).
- 77 D. C. BRADLEY, K. N. KAPOOR AND B. C. SMITH, J. Inorg. Nuclear Chem., 24 (1962) 863.
- 78 R. E. PANZER AND J. F. SUTTLE, J. Inorg. Nuclear Chem., 15 (1960) 67.
- 79 K. W. BAGNALL, D. BROWN AND P. J. JONES, J. Chem. Soc. (A), (1966) 1763.
- 80 K. W. BAGNALL, D. BROWN, P. J. JONES AND J. G. H. DU PREEZ, J. Chem. Soc., (1965) 3594.
- 81 M. LAMISSE, R. HEIMBURGER AND R. ROHMER, Compt. Rend., 258 (1964) 2078.
- 82 S. HERZOG, K. GUSTAV, E. KRUEGER, M. OBERENDER AND R. SCHUSTER, Z. Chem., 3 (1963) 428.
- 83 A. FELTZ, Z. Chem., 6 (1966) 318.
- 84 P. Gans, Thesis, London University (1964).
- 85 A. A. LIPOVSKII AND N. A. YAKOVLEVA, Zh. Neorg. Khim., 9 (1964) 767; Russ. J. Inorg. Chem., 9 (1964) 426.
- 86 P. GANS AND B. C. SMITH, J. Chem. Soc., (1964) 4172.
- 87 J. SELBIN, M. SCHOBER AND J. D. ORTEGO, J. Inorg. Nuclear Chem., 28 (1966) 1385.
- 88 P. GANS AND B. C. SMITH, J. Chem. Soc., (1964) 4177.
- 89 K. W. BAGNALL, A. M. DEANE, T. L. MARKIN, P. S. ROBINSON AND M. A. A. STEWART, J. Chem. Soc., (1961) 1611.
- 90 K. W. BAGNALL, D. BROWN AND P. J. JONES, J. Chem. Soc. (A), (1966) 741.

- 91 H. C. E. MANNERSKANTZ, G. W. PARSHALL AND G. WILKINSON, J. Chem. Soc., (1963) 3163.
- 92 J. M. MATTHEWS, J. Am. Chem. Soc., 20 (1898) 815.
- 93 J. M. MATTHEWS, J. Am. Chem. Soc., 20 (1898) 839.
- 94 I. KALNINS AND G. GIBSON, J. Inorg. Nuclear Chem., 7 (1958) 55.
- 95 H. J. BERTHOLD AND H. KNECHT, Angew. Chem., 77 (1965) 453.
- 96 R. C. YOUNG, J. Am. Chem. Soc., 57 (1935) 997.
- 97 S. PRASAD AND S. KUMAR, J. Indian Chem. Soc., 39 (1962) 15.
- 98 R. PERROT AND C. DEVIN, Compt. Rend., 246 (1958) 772.
- 99 B. W. FITZSIMMONS, P. GANS, B. HAYTON AND B. C. SMITH, J. Inorg. Nuclear Chem., 28 (1966) 915.
- 100 G. L. TER HAAR AND M. DUBECK, Inorg. Chem., 3 (1964) 1648.
- 101 L. T. REYNOLDS AND G. WILKINSON, J. Inorg. Nuclear Chem., 2 (1956) 246.
- 102 CHI-HSIAN WONG, TUNG-MON YEN AND TSENG-YUH LEE, Acta Cryst., 18 (1965) 340.
- 103 D. BROWN AND P. J. JONES, J. Chem. Soc. (A), (1967) 243.
- 104 L. Stern, Inorg. Chem., 3 (1964) 995.
- 105 W. H. ZACHARIASEN, Acta Cryst., 2 (1949) 296.
- 106 R. P. Dodge, G. S. Smith, Q. Johnson and R. E. Elson, Acta Cryst., 22 (1967) 85.
- 107 G. S. SMITH, Q. JOHNSON AND R. E. ELSON, Acta Cryst., 22 (1967) 300.
- 108 D. Brown, J. F. Easey and P. J. Jones, J. Chem. Soc. (A), (1967) to be published.
- 109 J. PRIGENT, Compt. Rend., 238 (1954) 102.
- 110 J. PRIGENT, Ann. Chim. France, 5 (1960) 65.
- 111 L. Stein, Proc. Colloque Physicochim. Protactinium, Paris, (1965) 101.
- 112 S. S. KIRSLIS, T. S. McMillan and H. A. Bernhardt, U.S. Report K-567 (1950).
- 113 D. BROWN AND P. J. JONES, J. Chem. Soc. (A), (1966) 874.
- 114 G. A. RAMPY, U.S. Report GAT-265 (1959).
- 115 S. A. SHCHUKAREV, I. V. VASIL'KOVA, N. S. MARTYNOVA AND YU. G. MAL'TSEV, Zh. Neorg. Khim., 3 (1958) 2647.
- 116 M. D. ADAMS, D. A. WENZ AND R. K. STEUNENBERG, J. Phys. Chem., 67 (1963) 1939.
- 117 D. C. Bradley, B. B. Chakravarti and A. K. Chatterjee, J. Inorg. Nuclear Chem., 3 (1957) 367.
- 118 J. PRIGENT, Compt. Rend., 236 (1953) 710.
- 119 J. PRIGENT, Compt. Rend., 239 (1954) 424.
- 120 K. W. BAGNALL, D. BROWN AND J. F. EASEY, J. Chem. Soc. (A), (1967) to be published.
- 121 D. BROWN, T. PETCHER AND A. J. SMITH, to be published.
- 122 J.-C. LEVETT, Compt. Rend., 260 (1965) 4775.
- 123 L. B. ASPREY, F. H. ELLINGER AND W. H. ZACHARIASEN, J. Am. Chem. Soc., 76 (1954) 5235.
- 124 T. K. KEENAN, Inorg. Chem., 4 (1965) 1500.
- 125 K. W. BAGNALL, J. B. LAIDLER AND M. A. A. STEWART, Chem. Commun., (1967) 24.
- 126 A. Büchler, J. B. Berkowitz-Mattuck and D. H. Dugre, J. Chem. Phys., 34 (1961) 2202.
- L. B. ASPREY AND R. A. PENNEMAN, Science, 145 (1964) 924. 127
- 128 L. B. ASPREY, F. H. KRUSE AND R. A. PENNEMAN, J. Am. Chem. Soc., 87 (1965) 3518.
- 129 L. B. Asprey, R. A. Penneman and F. H. Kruse, Proc. Colloque Physicochim. Protactinium, Paris, (1965) 113.
- 130 D. Brown and J. F. Easey, J. Chem. Soc. (A), (1966) 254.
- 131 O. L. Keller, Jr. and A. Chetham-Strode, Jr., Proc. Colloque Physicochim. Protactinium, Paris. (1965), 119.
- L. B. ASPREY AND R. A. PENNEMAN, Inorg. Chem., 3 (1964) 727.
- 133 P. CHARPIN, Compt. Rend., 260 (1965) 1914.
- 134 J. R. GEICHMAN, L. R. SWANEY AND P. R. OGLE, U.S. Reports GAT-T-808 and GAT-T-971
- 135 J. R. GEICHMAN, E. A. SMITH, S. S. TROND AND P. R. OGLE, Inorg. Chem., 1 (1962) 661.
- 136 J. R. GEICHMAN, E. A. SMITH AND P. R. OGLE, Inorg. Chem., 2 (1963) 1012.
- 137 P. R. OGLE, J. R. GEICHMAN AND S. S. TROND, U.S. Report GAT-T-552, Rev. 1 (1959).
- 138 R. A. Penneman, L. B. Asprey and G. Sturgeon, J. Am. Chem. Soc., 84 (1962) 4608.
- 139 G. A. RAMPY, U.S. Report GAT-T-697 (1959).
- 140 G. D. STURGEON, R. A. PENNEMAN, F. H. KRUSE AND L. B. ASPREY, Inorg. Chem., 4(1965) 748-

- 141 L. B. ASPREY, T. K. KEENAN AND G. D. STURGEON, Inorg. Nucl. Chem. Letters, 2 (1966) 19.
- 142 R. A. PENNEMAN, G. D. STURGEON, L. B. ASPREY AND F. H. KRUSE, J. Am. Chem. Soc., 87 (1965) 5803.
- 143 A. V. GROSSE, J. Am. Chem. Soc., 56 (1934) 2200.
- 144 A. V. GROSSE, Proc. Roy. Soc. A, 150 (1935) 353.
- 145 R. A. PENNEMAN, G. D. STURGEON AND L. B. ASPREV, Inorg. Chem., 3 (1964) 126.
- 146 D. Brown and J. F. Easey, Nature, 205 (1965) 589.
- 147 M. N. Bukhsh, J. Flegenheimer, F. M. Hall, A. G. Maddock and C. F. De Miranda, J. Inorg. Nuclear Chem., 28 (1966) 421.
- 148 W. RÜDORFF AND H. LEUTNER, Ann. Chem., 632 (1960) 1.
- 149 R. BOUGON AND P. PLURIEN, Compt. Rend., 260 (1965) 4217.
- 150 M. J. REISFELD AND F. A. CROSSY, Inorg. Chem., 4 (1965) 65.
- 151 K. W. BAGNALL AND D. BROWN, J. Chem. Soc., (1964) 3021.
- 152 K. W. BAGNALL, D. BROWN AND J. G. H. DU PREEZ, J. Chem. Soc., (1964) 2603.
- 153 D. BROWN AND P. J. JONES, J. Chem. Soc. (A), (1967) 247.
- 154 D. Brown and A. J. Smith, Chem. Commun., (1965) 554.
- 155 G. M. BROWN AND L. A. WALKER, Acta Cryst., 20 (1966) 220.
- 156 D. Brown, J. F. Easey and P. J. Jones, J. Chem. Soc. (A), to be published.
- 157 D. BROWN, J. F. EASEY AND J. G. H. DU PREEZ, J. Chem. Soc. (A), (1966) 258.
- 158 K. W. BAGNALL, D. BROWN AND J. G. H. DU PREEZ, J. Chem. Soc., (1965) 5217.
 159 R. E. PANZER AND J. F. SUTTLE, J. Inorg. Nuclear Chem., 13 (1960) 244.
- 160 J. BIGELEISEN, M. G. MAYER, P. C. STEVENSON AND J. TURKEVICH, J. Chem. Phys., 16 (1948) 442.
- 161 J. GAUNT, Trans. Faraday Soc., 50 (1954) 546.
- 162 J. GAUNT, J. Appl. Chem., 6 (1956) 277.
- 163 H. H. CLAASEN, B. B. WEINSTOCK AND J. G. MALM, J. Chem. Phys., 25 (1956) 426.
- 164 J. G. MALM, B. B. WEINSTOCK AND H. H. CLAASEN, J. Chem. Phys., 23 (1955) 2192.
- 165 B. WEINSTOCK AND H. H. CLAASEN, J. Chem. Phys., 31 (1959) 262.
- 166 W. H. ZACHARIASEN, Acta Cryst., 1 (1948) 285.
- 167 N. S. NIKOLAEV AND V. F. SUKHOVERKHOV, Dokl. Akad. Nauk SSSR, 136 (1961) 621.
- 168 B. Volavsek, Croat. Chem. Acta, 33 (1961) 181.
- 169 B. VOLAVSEK, Croat. Chem. Acta, 35 (1963) 61.
- 170 B. FRIEC, B. S. BRCIC AND J. SLIVNIK, Croat. Chem. Acta, 36 (1964) 173.
- 171 J. G. MALM, H. SELIG AND S. SIEGEL, Inorg. Chem., 5 (1966) 130.
- 172 I. SHEFT, H. H. HYMAN, R. M. ADAMS AND J. J. KATZ, J. Am. Chem. Soc., 83 (1961) 291.
- 173 S. KATZ, Inorg. Chem., 3 (1964) 1598.
- 174 H. MARTIN AND A. ALBERS, Naturwissenschaften, 33 (1946) 370.
- 175 R. M. Adams, I. Sheft and J. J. Katz, Proc. 2nd Inc. Conf. peaceful Uses atomic Energy, 20 (1958) 219.
- 176 I. Peka, Collection Czech. Chem. Commun., 31 (1966) 4245.
- 177 S. KATZ, U.S. Report ORNL-3497 (1963).
- 178 M. MICHALLET, French Report CEA-2110 (1961).
- 179 M. MICHALLET, M. CHEVRETON, D. MASSIGNON AND C. EYRAUD, Compt. Rend., 253 (1961) 2980.
- 180 W. H. ZACHARIASEN, Acta Cryst., 1 (1948) 277.
- 181 H. R. HOEKSTRA, Inorg. Chem., 2 (1963) 492.
- 182 I. F. ALENCHIKOVA, L. L. ZAITSEVA, L. V. LIPIS, N. S. NIKOLAEV, V. V. FOMIN AND N. T. CHEROWAREN, 2th Neuron Albim, 3 (1958) 251.
- 183 J. PRIGENT, Compt. Rend., 247 (1958) 1737.
- 184 F. OLSSON, Z. Anorg. Chem., 187 (1930) 112.
- 185 H. H. ANDERSON in G. T. SEABORG, J. J. KATZ AND W. M. MANNING (Eds.), The Chemistry of the Transuranium Elements, collected papers, McGraw-Hill, New York, 1949, Nat. Nuclear Energy Series, Vol. IV-14B, p. 825.
- 186 E. A. IPPOLITOVA AND L. M. KOVBA, Dokl. Akad. Nauk. SSSR, 138 (1961) 605.
- 187 G. MITRA, Z. Anorg. Chem., 326 (1963) 98.
- 188 W. H. ZACHARIASEN, Acta Cryst., 7 (1954) 783.

- 189 J. ALOY, Bull. Soc. Chins. France, 25 (1901) 153.
- 190 E. STARITZKY AND J. SINGER, Acta Cryst., 5 (1952) 536.
- 191 J. L. RYAN, Inorg. Chem., 2 (1963) 348.
- 192 D. HALL, A. D. RAE AND T. N. WATERS, Acta Cryst., 20 (1966) 160.
- 193 Yu. N. Mikhailov, V. G. Kuznetsov and E. S. Kovaleva, J. Struct. Chem. (U.S.S.R.), 6 (1965) 752.
- 194 R. SENDTNER, Ann., 195 (1879) 325.
- 195 H. LOEBEL, Dissert., Berlin (1907), according to Markov and Tsapkin 223.
- 196 J. P. DAY AND L. M. VENANZI, J. Chem. Soc. (A), (1966) 1363.
- 197 J. PRIGENT AND J. LUCAS, Compt. Rend., 251 (1960) 388. .
- 198 J. PRIGENT AND J. LUCAS, Compt. Rend., 253 (1961) 474.
- 199 J. G. ALLPRESS AND A. D. WADSLEY, Acta Cryst., 17 (1964) 41.
- 200 Yu. V. Komarov and M. F. Pushlenkov, Radiokhimiya, 3 (1961) 575.
- 201 A. DEPTULA, Nukleonika, 10 (1965) 765.
- 202 W. DILTHEY AND O. RAUCHHAUPT, Ber., 57B (1924) 309.
- 203 P. V. BALAKRISHNAN, S. K. PATIL AND H. V. VENKATASETTY, J. Inorg. Nuclear Chem., 28 (1966) 537.
- 204 D. C. Bradley, A. K. Chatteriee and A. K. Chatteriee, J. Inorg. Nuclear Chem., 12 (1959) 71.
- 205 V. P. MARKOV AND I. V. TSAPKINA, Zh. Neorg. Khim., 7 (1962) 2045; Russ. J. Inorg. Chem., 7 (1962) 1057.
- 206 Yu. V. Komarov and M. F. Pushlenkov, Radiokhimiya, 3 (1961) 567.
- 207 R. C. PAUL, S. S. SANDHU AND J. S. BASSI, J. Indian Chem. Soc., 38 (1961) 85.
- 208 P. Praetorius, Dissert. Halle-Wittenberg (1909), according to Comyns⁴.
- 209 V. P. MARKOV AND I. V. TSAPKINA, Zh. Neorg. Khim., 4 (1959) 2255; Russ. J. Inorg. Chem., 4 (1959) 1028.
- 210 R. RASCANU, Ann. Sci. Univ. Jassy, 16 (1930-31) 459; Chem. Abstr., 26 (1932) 2934.
- 211 G. KAUFMANN, R. WEISS AND R. ROHMER, Bull. Soc. Chim. France, (1963) 1140.
- 212 G. KAUFMANN, M. J. F. LEROY AND H. RISSE, Bull. Soc. Chim. France, (1966) 2928.
- 213 G. KAUFMANN, M. J. F. LEROY AND B. PASCHE, Bull. Soc. Chim. France, (1966) 3766.
- 214 V. M. VDOVENKO, A. A. LIPDVSKII AND S. A. NIKITINA, Radiokhimiya, 5 (1963) 139.
- 215 G. KAUFMANN AND M. J. F. LEROY, Bull. Soc. Chim. France, (1966) 3770.
- 216 A. von Unruh, Dissert, Rostock (1909), according to Comyns*.
- 217 A. CHRETIEN AND G. OECHSEL, Compt. Rend., 206 (1938) 254.
- 218 E. STARITZKY AND A. L. TRUTTT, U.S. Report AECD-3017 (1950).
- 219 J. J. KATZ AND E. RABINOWITCH, The Chemistry of Urantum, McGraw-Hill, New York (1951), Nat. Nuclear Energy Series, Vol. VIII-S, pp. 576, 592, 596.
- 220 W. PETERS, Ber., 42 (1909) 4826.
- 221 W. PETERS, Z. Anorg. Chem., 78 (1912) 159.
- 222 I. KALNINS AND G. GIBSON, J. Inorg. Nuclear Chem., 11 (1959) 115.
- 223 V. P. MARKOV AND V. V. TSAPKIN, Zh. Neorg. Khim., 4 (1959) 2261; Russ. J. Inorg. Chem., 4 (1959) 1030.
- 224 P. V. BALAKRISHNAN, S. K. PATIL, H. D. SHARMA AND H. V. VENKATASETTY, Proc. Nucl. Radiation Chem. Symp., Bombay (1964) 30.
- 225 S. P. McGlynn, J. K. Smith and W. C. Neely, J. Chem. Phys., 35 (1961) 105.